Synthesis of polystyrene-silica composite particles via one-step nanoparticle-stabilized emulsion polymerization.
نویسندگان
چکیده
Polystyrene-silica core-shell composite particles are prepared by one-step emulsion polymerization with a nonionic initiator VA-086, solely stabilized by silica nanoparticles. The silica nanoparticles are successfully incorporated as the shell, likely due to the fact that the nanoparticles are thermodynamically favorable to adsorb and remain at the liquid-liquid interfaces during the emulsion polymerization. The silica content, determined by thermogravimetric analysis, is approximately 20 wt% in the composite particles. In addition, we further explore the polymerization mechanism by studying the particle growth as a function of initiator concentration and reaction time: when the initiator/monomer ratio is increased from 0.83 to 2.5 wt%, the particle size at 24 h reaction time decreases for a fixed monomer amount, possibly due to a larger number of nuclei at the initial stage of polymerization. Further increasing the initiator/monomer ratio to 4.2 wt% does not continually decrease the particle size, which may be limited by the stabilization provided by a fixed concentration of silica nanoparticles. The surface coverage also changes with initiator concentration and reaction time although the underlying mechanism is not fully understood.
منابع مشابه
The One-Step Pickering Emulsion Polymerization Route for Synthesizing Organic-Inorganic Nanocomposite Particles
Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide (VA-086) and potassium persulfate (KPS) as the initiator. Motivated by potenti...
متن کاملSynthesis of Silica/Polystyrene Nanocomposite Particles by Miniemulsion Polymerization
Miniemulsion polymerization is one of heterogeneous polymerization method that can be effectively used to synthesis of various novel organic-inorganic nanocomposite particles. This method can provide opportunity of good incorporation between the polymer and inorganic phases in the formed submicrometer-sized particles. In this article, we report preparation polystyrene/silica nanocomposite p...
متن کاملSynthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica.
Core-polystyrene/shell-silica nanocomposite particles are synthesized by simple soap-free emulsion polymerization employing positively charged silica sol. The polymerization is initiated with conventional anionic KPS. It is found that the silica sol should be added after the initiation and nucleation of the soap-free emulsion polymerization in order to obtain colloidally stable composite partic...
متن کاملPreparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization.
We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface ...
متن کاملNonspherical nanoparticles with controlled morphologies via seeded surface-initiated single electron transfer radical polymerization in soap-free emulsion.
This work reports a facile novel approach to prepare asymmetric poly(vinylidene fluoride)/polystyrene (PVDF/PS) composite latex particles with controllable morphologies using one-step soap-free seeded emulsion polymerization, i.e., surface-initiated single electron transfer radical polymerization (SET-RP) of styrene (St) at the surface of PVDF seed particles. It was observed that the morphology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 333 2 شماره
صفحات -
تاریخ انتشار 2009